Sensing Glove to Aid in Stroke Recovery

Published by MedRian on

Researchers at MIT created a sensing glove that can detect small pressuref changes along its surface when a wearer grasps something. The glove is threaded with tiny pressure sensors, which are studded with micropillars that create changes in an electrical signal when they bend and deform. This provides an incredibly sensitive measurement of tactile pressure and the glove even detects the wearer’s pulse. The researchers hope that the technology could assist in motor function retraining in patients who have experienced a stroke, and also result in wearables that can measure vital signs more accurately and conveniently than existing devices, such as smart watches.

The technology works thanks to tiny pressure sensors that are incorporated into the fabric glove. These sensors are encrusted with thousands of “micropillars,” which are microscopic gold filaments that deform in response to pressure and provide a corresponding change in an electrical signal that the device can measure. The individiual sensors are highly sensitive, and when applied over a wearer’s fingertip not only provide a measurement of pressure applied to external objects through grasping but also a measurement of the pulse.    

“The simplicity and reliability of our sensing structure holds great promise for a diversity of health care applications, such as pulse detection and recovering the sensory capability in patients with tactile dysfunction,” said Nicholas Fang, a researcher involved in the study, in a press release.

The primary application for the pressure sensing glove is as an aid during stroke rehabilitation, which allows a wearer to fine tune their hand strength and grip, and track progress. So far, the researchers have characterized the readings from the glove while users perform a variety of everyday tasks that require different degrees of dexterity and grip at different points on the hand, from gripping a glass to holding a balloon.

“Some fine motor skills require not only knowing how to handle objects, but also how much force should be exerted,” Fang says. “This glove could provide us more accurate measurements of gripping force for control groups versus patients recovering from stroke or other neurological conditions. This could increase our understanding, and enable control.”

However, the team is also interested in incorporating the sensors into other wearables, such as flexible patches, that can measure physiological parameters such as pulse and blood pressure more accurately than existing health-focused wearables. “Pulse is a mechanical vibration that can also cause deformation of the skin, which we can’t feel, but the pillars can pick up,” said Fang.

Study in Nature Communications: Skin-electrode iontronic interface for mechanosensing

Via: MIT





Source link


0 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

en_USEnglish